
Porting Simulation,
Data-Intensive, and AI
Applications to the
Aurora Exascale
System

IXPUG Workshop HPC Asia 2023

27 February 2023

VENKAT VISHWANATH
Data Science Team Lead
Argonne Leadership Computing Facility (ALCF)
Argonne National Laboratory

SCOTT PARKER
Performance Engineering Team Lead
Argonne Leadership Computing Facility (ALCF)
Argonne National Laboratory

TIM WILLIAMS
Deputy Division Director
Computational Science Division (CPS)
Argonne National Laboratory

Aurora – Argonne’s Exascale Supercomputer

§ 2 exaFLOPS double precision
§ > 10,000 nodes
§ HPE Slingshot 11 network, dragonfly
§ > 10 PB memory

2

Aurora node
§ 2X Intel® Xeon® CPU Max Series
§ 6X Intel® Data Center GPU Max Series

GPU GPU

GPU GPU

GPU GPU

DRAM DRAM

Sl
in
gs
ho
t Slingshot

CPU
HBM

CPU
HBM

Aurora I/O System
§ Distributed Asynchronous Object Storage (DAOS)
§ ≥ 230 PB, ≥ 25 TB/s

Status of Aurora
§ Aurora is built with exception of compute blades
§ Installation of compute blades well underway
§ Targeting early-user system access in Q3

3

Exascale Science

§ Exascale CFD simulation data trains NN model for rapid design studies
§ Exascale cosmology simulation data, sky survey data, and ML inform observations and test theory
§ Exascale training from tokamak experimental data for inference at experiment
§ Exascale inference from DNN to construct connectome from massive EM brain tissue dataset
§ Exascale search spaces: PV materials, chemical kinetics, cancer drug combinations, detector collision events 4

Simulation Data Learning

Figure 1: Data flow and summary of the FRNN algorithm

Missing a real disruption (false negative) can be costly because of the damaging effects of a disruption, while triggering a false
positive alarm wastes valuable experimental time and resources. Setting the threshold allows a tradeoff between these two

Exascale Applications/Software Readiness

§ ALCF Aurora Early Science Program (ESP)
§ Managers: Tim Williams, Venkat Vishwanath
§ 9 Simulation,10 Data and Learning projects
§ Every project will run a proposed science

campaign on Aurora
§ Training: Workshops, Hackathons, Dungeon

Sessions, webinars
§ Argonne postdoc and staff support (Catalysts)

5

§ DOE Exascale Computing Project (ECP)
§ 3 technical areas: Application Development,

Software Technology, Hardware and Integration
– AD: 21 applications projects preparing

codes for exascale
– ST: 66 unique software products
– HI: Applications Integration: deploy apps on

specific exascale systems (Aurora,
Frontier)

§ AppInt funding for Argonne staff for Aurora:
– ALCF working with 15 ECP AD so far

Argonne-Intel Center of Excellence – dedicated Intel staff

 5

a proof-of-concept, RMG-Cat successfully discovered the major kinetic pathways for
CH4 oxidation on nickel; in less than 5 minutes on a single core, RMG-Cat was able to
find all the same reactions as a microkinetic mechanism developed over several years by
a team of experts. RMG-cat can use a single node effectively. An entire RMG-Cat run
can take between a few seconds to a few hours on a personal laptop, but for the purposes
of this application we only need to know which thermodynamic and kinetic parameters
are absent or poorly estimated. This node-bound preprocessing step only takes a few
seconds to evaluate. Once these parameters have been calculated through the workflow
RMG-Cat can be run entirely as a post-processing step, and if necessary this process can
be iterated upon until all relevant species are calculated. For each species, and all related
reactions between those species that RMG-cat does not have information for, we will
launch an instance of our search suite (KinBot, GAlgo, LRT) in parallel.

Once the area to search is defined KinBot and GAlgo will use learning techniques such as
genetic algorithms to efficiently explore the PES. These efficient searches will require
hundreds of thousands (106) of individual energy evaluations and will simultaneously
learn a low rank tensor (LRT) approximation of the PES that will be used to expedite the
search and to calculate the kinetic and thermochemical parameters.
Each of these searches will be carried out in the following manner, as shown in figure 1.
At each step, GAlgo proposes a configuration to evaluate an objective function that
measures the proximity of that particular configuration to a critical point of interest (e.g.
saddle point or a local minimum). The configuration is represented by RxN matrix, where
R is the number of configurations, and N is the dimensionality (e.g. for normal
coordinates N=3a-6 where a is the number of nuclei), while the objective function
requires KinBot to evaluate the PES from a computational chemistry application such as
NWChem, as well as gradients with respect to each dimension, leading to a matrix of size
Rx(N+1). GAlgo then uses the objective function value to propose a new configuration as
it proceeds with the search of saddle points. KinBot generates input and parses output
from simulations to feed these energies and gradients into LRT. LRT will need the
aggregated number of PES evaluations input/output pairs, as MxN and Mx1 matrices,
respectively, where M is the total, aggregated number of PES evaluations. The
constructed LRT approximation (stored as a coefficient tensor) will be invoked instead of
the PES evaluation if GAlgo's imposed accuracy tolerance is met. Our current estimates
for the above dimensionalities are: N~100, M~106, and R~104.

Figure 1: Application workflow

RMG-Cat	encounters	
unknown	chemistry	

KinBot	initiates	
phase	space	search	
for	minima	and	
transition	states	

Properties	stored	
in	database	

High	Accuracy	
Single	Point	jobs	

LRT	
approximation	of	

the	surface	

GAlgo	inquires	the	
surface	evaluation	

PES		
or	LRT	

Submit	
Quantum	
Chemistry	

Job	to	Queue	

Dark Sky Mining Salman Habib

but not for the typical BSP-based supercomputing application. This model is very suited for the
A21 architecture (details cannot be discussed here due to RSNDA restrictions).

As a specific example from this project we consider the construction of synthetic galaxy

Core Catalog

Halo Catalog

Merger Trees

 Galaxies
Galaxy Positions

Galaxy Light-cone Positions,

Velocities, Redshifts

FOV Galaxy Locations

Shears at galaxy

positions

Particle Catalog from N-body Simulation

ProtoDC2 Catalog

5x5 sq. deg

0<z<1

Properties include:

galaxy_id, ra, dec,

M*, SDSS ugriz,

shears,magnification,

host halo properties

Particle

Light-cones

Kappa Maps

FOV Cut-outs

Halo Finder

Light-cone

Generator

Position Finder

Galacticus

Mass-sheet

Generator

Shear Interpolator

Ray Tracing

Light-cone

Generator

Merger Tree

Generator

Figure 1. Workflow for synthetic galaxy catalog
construction showing science products (courtesy
LSST DESC Cosmological Simulations working
group).

catalogs; these have become the centerpiece of the
industry standard practice for validating cosmolog-
ical inference pipelines. While the use-cases of
such galaxy catalogs are highly varied, the princi-
pal idea behind their use is straightforward: the ex-
istence of a realistic mock universe generated from
a known underlying model allows scientists to val-
idate the analysis pipelines they intend to run on
the actual astronomical dataset.

Figure 1 shows an end-to-end diagram of
the workflow for producing a synthetic sky from
raw simulation outputs, which requires an entire
ecosystem of scientific codes rather than a single
application. Beginning from (Level 1) direct simu-
lation outputs, this ecosystem:

1. Creates Level 2 science datasets such as cat-
alogs of dark matter halos, as well as time-
series data such as trees of merger histories
of each halo;

2. Creates Level 3 mock galaxy catalogs by
training and applying nonlinear mappings
from the halos to synthetic galaxies that re-
side in the halos.

It is important to note that except for the open-source semi-analytic galaxy formation code Galacti-
cus [16] (which for many tasks is already being replaced by an Argonne-based methodology), all
the functional blocks in Figure 1 exist, were written by the Argonne team, and are already running
as a parallel workflow application on Cetus, Cooley, and the Phoenix cluster (the last-named is
a CELS/HEP data-intensive computing pathfinder project). Indeed, this science pipeline has now
reached production-level maturity: our group is currently deploying it to generate the flagship syn-
thetic catalogs for LSST DESC’s Data Challenge 2. At the time of this writing, a growing list of
more than twenty distinct analyses have been proposed by LSST DESC members who will use
these catalogs as a foundational component of the methodology in their proposed publications.

For our Aurora application, we propose to scale up our science pipeline to generate large suites
of high-accuracy synthetic skies, making the data products publicly available for analysis by the
wider cosmological community. The production phase of this proposal will be preceded by a train-
ing phase, in which we fine-tune our hierarchical model with targeted application of machine learn-
ing algorithms. As described below in Section 2.5.4, we will use generative deep learning models
trained on high-resolution simulations to produce synthetic halo- and star-formation histories. We
will accelerate evaluation of our forward modeled summary statistics with Gaussian Process mod-
eling, applying Variational Autoencoder techniques for dimensional reduction. Because our goal

6

Data/Learning for Exascale CFD K. E. Jansen

Figure 2: Isosurface of instantaneous Q criterion colored by speed over a vertical tail at Re = 3.5 105,
with a rudder deflection angle of 30 degrees and 12 unsteady jets active. This DES simulation
shows our method’s ability to refine the grid to capture the unsteady structures resulting from the
separation near the rudder and from the interaction between the unsteady jets and the crossflow.

(a) CFD - First adapted mesh. (b) CFD - Second adapted mesh. (c) Experiments.

Figure 3: Phase-averaged isosurface of velocity (color) and vorticity (grey) revealing coherent struc-
tures in the wake of a synthetic jet located at the junction between the stabilizer and the deflected
rudder of a vertical tail. Comparison between CFD predictions on two successive adapted meshes
and experimental results (c).

16

Figure 1: Workflow of the proposed simulations

2e. Application Summary
The proposed simulations embody a complex
workflow, which integrates several codes and
algorithms, as illustrated in Figure 1. Data will be
generated by the electronic structure layer, comprising
the Quantum Espresso9-10 code for generating low-cost,
low-fidelity DFT data and the BerkeleyGW code for
generating high-cost, high-fidelity MBPT data. Data
from quantum mechanical simulations will flow into
two layers of machine learning, a discovery layer and a
decision layer. The discovery layer includes feature
selection, using the SISSO code, to identify low-cost
features that correlate strongly with high-cost excited
state properties, as well as algorithms such as subgroup
discovery11-12 to reveal patterns in data. The discovery layer will further promote deeper understanding of
the underlying physics. Information from the discovery layer will feed into the decision layer, in which
Bayesian optimization algorithms will decide which data points to sample next and at what level of
fidelity. Decisions will be translated to queries of the CSD database, a large repository of unlabeled data,
and coordinates of structures pulled out of CSD will be fed back into the electronic structure layer to
acquire labels. This process will repeat iteratively in order to refine our models. Structures identified as
promising candidates at any point will be further evaluated using high-fidelity GW+BSE calculations to
accurately predict their electronic and optical properties. Due to the high computational cost of MBPT
calculations of large periodic systems with several hundred atoms, we expect most of the computer time
requested to be spent on BerkeleyGW calculations. The computational cost of DFT and ML calculations
is negligible in comparison. Therefore, the proposed development plan is focused primarily on the
BerkeleyGW code. Additional goals are scalability improvements of SISSO and development of Python
workflow management tools to integrate and automate the whole workflow.

2e.i. Application Software Requirements

Quantum ESPRESSO:
Language: FORTRAN-90
Libraries: ScaLAPACK, ELPA, LAPACK, BLAS, FFTW
Parallelism: MPI, OpenMP
Past DOE Readiness Programs: NESAP for Cori

BerkeleyGW:
Language: FORTRAN 2008
Libraries: ScaLAPACK, ELPA, LAPACK, BLAS, FFTW
IO Libraries: Parallel HDF5
Past DOE Readines Programs: NESAP For Cori

SISSO:
Language: FORTRAN
Libraries: BLAS, LAPACK
Parallelism: MPI
Past DOE Readines Programs: optimization on Theta is underway within INCITE project

Multi-fidelity Bayesian Optimization:
Language: Python
Libraries: cuDNN, CUDA, Tensorflow, Pytorch
Parallelism: CUDA on GPUs

Figure 1: Data flow and summary of the FRNN algorithm

Missing a real disruption (false negative) can be costly because of the damaging effects of a disruption, while triggering a false
positive alarm wastes valuable experimental time and resources. Setting the threshold allows a tradeoff between these two

http://esp.alcf.anl.gov

http://esp.alcf.anl.gov/

Tracking Aurora Applications Development
§ Steps in application preparation

– Implementation of science and algorithms
– Porting to Aurora programming models
– Testing with Aurora SDK on Aurora testbeds
– Tuning for performance on Aurora testbeds
– Scaling across the Aurora system

6

§ ALCF and Intel working with over 40
projects to ready codes for Aurora

§ Effort from over 60 Argonne & Intel
people and numerous outside teams

Application Science Implementation Port to Aurora Programming Models

10

27

8

29

9

28

12

25

8

27

10

28

8

32

6

34

5

36

0
5
10
15
20
25
30
35
40

Partial Full

20Q4 21Q1 21Q2 21Q3 21Q4 22Q1 22Q2 22Q3 22Q4

6

22

9

4

22

11

3

18
16

4

18
15

1

19
15

0

15

23

4

15

22

3

13

24

3

12

26

0

5

10

15

20

25

30

Early/None Partial Full

20Q4 21Q1 21Q2 21Q3 21Q4 22Q1 22Q2 22Q3 22Q4

2022 Q4 Aurora Applications Status

7

Application Q4

HACC

OpenMC

XGC

QMCPack

AMRWind

NAMD

QUDA

LAMMPS

NekRS

SW4

FloodFillNetwork

Data Driven CFD

Harvey

PHASTA

MFIX-Exa

FushionDL

DCMesh

E3SM-MMF

CANDLE/UNO

Thornado

Chroma

Application Q4

GENE

BerkelyGW

Latte

cctbx

MILC

NWChemEx

MadGraph

Grid

GAMESS

NYX

DarkSkyMining

Uintah

Nalu-Wind

GEM

mb_aligner

RXMD-NN

Flow Based Generative Model

FastCaloSim

spiniFEL

Multi-Grid Parameter Opt.

Running

Running

Running

Partially Running

Porting in Progress

Exascale Programming
§ We’ve been developing for future target exascale architectures for years

– GPU acceleration

§ Performance portability across Intel, AMD, NVIDIA
– Pick a portability layer (Kokkos, SYCL, OpenMP 5, your own library, TensorFlow, PyTorch)
– Work with implementers of layer on target systems

§ Lingua Franca
– Simulation – compiled languages; math libraries; SYCL, CUDA, HIP, (Kokkos, Raja)
– Data & Learning – Python frameworks

8

§ Aurora Programming
– Simulation

• oneAPI, oneMKL
• ECP E4S

– Data & Learning
• Frameworks backed by oneDAL, oneCCL
• DAOS

§ Aurora Development Hardware
– In the beginning, Xeon integrated graphics
– Sequence of pre-production Intel discrete

GPUs
– Sunspot

• 128 nodes of Aurora hardware

https://e4s-project.github.io/
https://e4s-project.github.io/

XGC Early Science Project (Simulation; PI: CS Chang)

9

Divertor

Tungsten

§ Hot exhaust such as He particles
hits the divertor

§ Knocks out Tungsten atoms
(sputtering)

§ Some are ionized and re-enter
the fusion plasma

§ Interacts, impacts turbulence and
other plasma behaviors

§ Will it negatively impact
confinement or energy
production?

§ Early Science campaign:
Predict ITER plasma behavior
with Tungsten impurity ions

ITER Tokamak

XGC Early Science Project
§ XGC gyrokinetic PIC (Particle-in-Cell) fusion plasma physics simulation on unstructured grid

– Multi-ion-species
§ Aurora implementation: Kokkos library with SYCL execution space

– Portable across {Intel, AMD, NVIDIA} GPUs

10

Field
solve

Electron push
(x60)

Ion push

Charge
scatter

Transfer particle
data between

compute nodes

Collisions
Sources

Diagnostics

Single GPU Performance FOM
§ SimpleFOM =

1/(loop_time/(#particles × #timesteps))
§ 2 MPI ranks
§ XGC1 small test case
§ 80 million particles

GPU SimpleFOM
NVIDIA A100 (Polaris) 1.4×106

Intel® Data Center GPU Max
Series (Sunspot) 2.2×106

Argonne POCs: T. Williams, A. Scheinberg
Intel POC: R. Bustamante

Cancer Metastasis Early Science Project (Data: PI: Amanda Randles)
§ ESP GOAL: Investigate circulating tumor cells in

human vasculatory system
– 3D Lattice Boltzmann CFD
– FEM for cells, deformation
– Immersed boundary method to couple

§ In situ exascale data visualization & analysis
§ Aurora implementation: bake-off between

– SYCL (oneAPI DPC++)
– Kokkos with SYCL backend

§ HARVEY application translated with Syclomatic, runs
on Intel discrete GPUs

§ MiniApp LBM shows Kokkos-SYCL competitive with
handcoded SYCL

11

(1). Flow inside a
human aorta.
Ames, Jeff, et al.
"Low-overhead in situ
visualization using
halo replay." 2019
IEEE 9th Symposium
on Large Data
Analysis and
Visualization (LDAV).
IEEE, 2019.

Argonne POCs: J. Insley, S. Rizzi, V. Mateevitsi,
G. Liu, S. Patel

Intel POC: V. Madanath

§ Python and Productivity Languages
§ Numba, NumPy, etc.
§ JAX and Julia

§ Deep Learning Frameworks:
§ PyTorch, TensorFlow, Horovod, DDP,

Deepspeed

§ Machine Learning
§ OneDAL, scikit-learn, XGBoost, etc.

§ Optimized and scalable communication
using OneCCL

§ Spark BigData Analytics stack
§ Profiling and debugging tools

Data Science and Learning on Aurora

https://software.intel.com/content/www/us/en/develop/tools/o
neapi/ai-analytics-toolkit.html

Aurora will provide for a familiar, productive and performant HPC and AI
software stack Intel AI Analytics Toolkit

https://software.intel.com/content/www/us/en/develop/tools/oneapi/ai-analytics-toolkit.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/ai-analytics-toolkit.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/ai-analytics-toolkit.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/ai-analytics-toolkit.html

Argonne Leadership Computing Facility13

Distributed Asynchronous Object Store (DAOS)

qPrimary storage system for Aurora
qOffers high performance in bandwidth and IO

operations
q 230 PB capacity
q ≥ 25 TB/s

qProvides a flexible storage API that enables new
I/O paradigms

qProvides compatibility with existing I/O models
such as POSIX, MPI-IO and HDF5

qOpen-source storage solution

Argonne Leadership Computing Facility14

AURORA ESP Data and Learning Projects and Methods

14

Le
ar

ni
ng

D
at

a

Classification

Regression

Reinforment learning

Clustering

Uncertainty Quantification

Dimensionality Reduction

Reduced / Surrogate Models

Advanced Statistics

Image and Signal Processing

Graph Analytics

Databases

Advanced Workflows

In Situ Viz & Analysis

Virtual Drug Response Prediction

Enabling Connectomics at Exascale to
Facilitate Discoveries in Neuroscience

Machine Learning for Lattice Quantum
Chromodynamics

Accelerated Deep Learning Discovery in
Fusion Energy Science

Many-Body Perturbation Theory Meets
Machine Learning

Exascale Computational Catalysis

Dark Sky Mining

Data Analytics and Machine Learning for
Exascale CFD

In Situ Visualization and Analysis of Fluid-
Structure-Interaction Simulations

Simulating and Learning in the ATLAS detector
at the Exascale

CONNECTOMICS DATA-DRIVEN MODELS

~1cm^3

sample

~1mm^3

section

section

section

section

section

section

25000
40nm sections
1mm x 1mm

(6nm resolution)

Each section
imaged with EM as

N tiles (8 bit)

Sections
stitched
together

How much image data is 1mm^3 ? 1e15 voxels -> ~1 PB

Mouse brain: 70M neurons

Data from Gregg Wildenberg, Kasthuri Lab, UChicago

80K x 40K pixels

DATA CHALLENGES IN CONNECTOMICS

~1cm^3
How much image data
is 1cm^3 ? ~1EB

~1000cm^3
How much image data is
1000cm^3 ? ~1000 EB

(6nm x 6nm x 40nm)

Reconstructed data
will be much larger:

- Segmentation labels
for each voxel (4x
voxel data)

- 3D Mesh
- Skeleton

Mouse brain: 70M neurons Human brain: 80B neurons

tiny brain

The structures are expected to be
used to seed simulations to study
flow in neuro transmitters, in better
modeling the brain, brain-inspired
computing, among others.

Courtesy: Nicola Ferrier, Tom Uram, Bobby Kasthuri (Argonne & UChicago)

CONNECTOMICS PROCESSING

17

Sections
stitched
together

Align
sections

Mask out
non-target

objects

Segment
target

objects

Data from Gregg Wildenberg, Kasthuri Lab, UChicago

RECONSTRUCTING THE BRAIN CONNECTIVITY

Kasthuri et al, Cell 2015

LARGE-SCALE RECONSTRUCTION
▪ Inference (and training) has scaled on CPU-based and GPU-based

supercomputers (parallel granularity: overlapping subvolumes)
–Achieved million-way concurrency on Theta supercomputer

▪ Image stitching and alignment components are being scaled as well to
ensure a scalable end-to-end pipeline

Dong, et al, “Scaling Distributed Training of Flood-Filling Networks on HPC Infrastructure for Brain Mapping”, 2019
IEEE/ACM Third Workshop on Deep Learning on Supercomputers (DLS) at SC19

Vescovi, et al, “Toward an Automated HPC Pipeline for Processing Large Scale Electron Microscopy Data”, 2020
IEEE/ACM 2nd Annual Workshop on Extreme-scale Experiment-in-the-Loop Computing (XLOOP) at SC19

Exascale Inference Problem:
▪ On a single GPU (A100), we achieve ~80 MegaVoxels/hour using 32-bit

(There is still room for improvement here)
▪ In reduced precision (8-16 bits), we expect ~1 GigaVoxel/hour per GPU
▪ 1 PetaVoxel (1mm3) will take ~1M GPU node hours
▪ Approximately, 24 hours on a system with 50K GPUs (considering

overlapping subvolumes)
▪ For a mouse brain (1cm3), 1 ExaVoxel, we would need ~3 years on an

exascale system

20

• Progress on Sycl-direct nekRS benchmarks, fusing the nested loops
• the kernel version of best performance

Full-core configuration on the left rod bundle on

Full-core configuration on the left and a single 17x17 rod bundle on the right.

NekRS is an open-source Navier-Stokes solver based on the spectral element method targeting
classical processors and accelerators like GPUs. Developed in 2019, the code uses high-performance
kernels from libParanumal. For API portable programming OCCA is used.

Intel® Data Center GPU Max Series
with Intel oneAPI DPC++ implementation

ExaSMR: NekRS Performance on Intel® Data Center GPU Max Series

21

OpenMC performance
https://docs.openmc.org

§ Monte Carlo particle transport code for exascale computations

§ Intel® Data Center GPU Max Series sustains 999k particles/second using
OpenMP Target offload

§ >2x performance gain over A100

§ Exascale Compute Project Annual Meeting 2022 presentation:

§ https://www.alcf.anl.gov/events/2022-ecp-annual-meeting

§ International Conference on Physics of Reactors 2022 presentation:

§ https://www.ans.org/meetings/physor2022/session/view-976/

Application Summary: OpenMC is a Monte Carlo particle transport application that has recently been
ported to the OpenMP target offloading programming model for use on GPU-based systems. The Monte
Carlo method employed by OpenMC is considered the "gold standard" for high-fidelity simulation while
also having the advantage of being a general-purpose method able to simulate nearly any geometry or
material without the need for domain-specific assumptions. However, despite the extreme advantages in
ease of use and accuracy, Monte Carlo methods like those in OpenMC often suffer from a very high
computational cost. The extreme performance gains OpenMC has achieved on GPUs, as compared to
traditional CPU architectures, is finally bringing within reach a much larger class of problems that
historically were deemed too expensive to simulate using Monte Carlo methods. The leap in
performance that GPUs are now offering carries with it the potential to disrupt a number of engineering
technology stacks that have traditionally been dominated by non-general deterministic methods. For
instance, faster MC applications may greatly expand the design space and simplify the regulation process
for new nuclear reactor designs -- potentially improving the economics of nuclear energy and therefore
helping to solve the world's climate crisis.

Relative OpenMC Depleted Fuel Inactive Batch Performance on HM-Large
Reactor (Higher is better)

1
1.17

2.05

0

0.5

1

1.5

2

2.5

NVIDIA A100 PVC 1 Stack PVC 2 Stack

Near linear scaling from Intel® Data Center GPU
Max Series 1 Stack to 2 Stack

1 stack 2 stacks
Intel® Data Center GPU Max Series

NVIDIA A100

22

ExaSky: CRK-HACC Performance
on Intel® Data Center GPU Max Series

• Original CUDA kernels
translated to SYCL using
SYCLomatic, with the five
most compute-intensive
kernels hand-optimized by
Intel performance engineers.

• Implemented optimizations
included loop restructuring to
take advantage of SYCL
subgroup broadcast
performance.

CRK-HACC FOM for SYCL on Intel® Data Center Max Series
relative to CUDA on NVIDIA A100

• ExaSky project seeks to verify convergence
between grid and particle methods for simulating
gravity and hydrodynamics to resolve cosmological
structure formation on exascale systems.

• CRK-HACC employs n-body methods for gravity
and a novel formulation of Smoothed Particle
Hydrodynamics.

• SYCL on Intel® Data Center GPU Max Series.
• CUDA on NVIDIA A100 GPUs.

Figure-of-Merit (FOM) measures throughput of force calculations for 33 million
particles on the GPU, including time required for data transfer between host
and device. Observed relative performance between Intel® Data Center GPU
Max Series and NVIDIA A100 is strongly correlated with the expected single
precision floating point throughput for each architecture.

1.00

1.42

2.63

0.00

0.50

1.00

1.50

2.00

2.50

3.00

A100 PVC 1 Stack PVC 2 Stacks

FO
M

 /
A1

00

1 stack 2 stacks
Intel® Data Center GPU Max Series

NVIDIA
A100

QMCPACK: Performance
§ QMCPACK, is a high-performance open-source Quantum Monte Carlo

(QMC) simulation code. Its main applications are in computing the
quantum mechanical properties of materials with benchmark accuracy,
including for energy storage and quantum materials.

§ QMCPACK uses C++ and OpenMP target offload, plus wrappers around
vendor optimized linear algebra.

§ Benchmark configuration:
– Running `dmc-a512-e6144-DU64` problem. This simulates a

supercell of nickel oxide with 6144 electrons and 512 NiO atoms
total.

– PVC: 2 MPI ranks, with one MPI rank, 8 Walkers, 64 GB of HBM
per Tile. Using Intel(R) oneAPI DPC++/C++ Compiler 2022.1.0

– A100 (40GB): 1 MPI Rank, 7 Walkers. LLVM15 compiler.
– The Figure Of Merit (FOM) measure is throughput (walker

moves/second). Higher is better.

0.1

0.15

FOM (walkers/second)

QMCPACK Throughput
A100 PVC

Argonne POCs: A. Benali, Y. Luo, T. Applencourt
Intel POC: Y. Kim

24

WDMApp: XGC Performance

• Science case: Predict ITER plasma behavior
with Tungsten impurity ions sputtered from
the divertor

• Gyrokinetic particle-in-cell simulation of
tokamak plasma
⏤Kokkos/SYCL on Intel GPUs
⏤Kokkos/CUDA on NVIDIA A100 GPUs.

ESP Project PI: CS Chang

0

500000

1000000

1500000

2000000

2500000

XGC FOM
XGC1 small test case

80M particles, 2 MPI ranks

Sunspot (Intel® Data Center Max GPU)
Polaris (NVIDIA A100 GPU)

www.anl.gov

THANK YOU

25

